The synthesis and X-ray structures of ytterbocene(II) complexes containing pendant pyridyl groups, $\left[\mathrm{Yb}\left(\mathrm{Cp}^{x}\right)_{2}\right]\left\{\mathrm{Cp}^{x}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}(\mathrm{R})\left[\mathrm{CMe}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right]-1,3 ;\right.$ $\mathrm{R}=\mathrm{H}$ or SiMe_{3} and $n=0$ or 1$\}^{*}$

Johannes R. van den Hende, Peter B. Hitchcock and Michael F. Lappert
School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (UK)

Terence A. Nile
Department of Chemistry, University of North Carolina, Greensboro, NC (USA)
(Received January 27, 1994)

Abstract

Metallation of $\mathrm{C}_{5} \mathrm{H}_{5}\left[\mathrm{C}\left(\mathrm{Me}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right] \quad\left(\equiv \mathrm{Cp}^{\mathrm{py}} \mathrm{H}\right), \quad \mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiMe}_{3}\right) /\left\{\mathrm{C}\left(\mathrm{Me}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right\}-3\right] \quad\left(\equiv \mathrm{Cp}^{\prime \mathrm{Dy}} \mathrm{H}\right), \quad \mathrm{C}_{5} \mathrm{H}_{5}\right.$ [$\left.\mathrm{C}(\mathrm{Me})_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right]\left(\equiv \mathrm{Cp}^{\mathrm{py}(3)} \mathrm{H}\right)$, and $\mathrm{C}_{5} \mathrm{H}_{4}\left[\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{CO}(\mathrm{Me})_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)-3\right]\left[\equiv \mathrm{Cp}^{\prime p y(3)} \mathrm{H}\right]$ with KH in THF yielded the potassium complexes $\mathrm{KCp}^{\mathrm{py}}$ (1), $\mathrm{KCp}^{\prime \mathrm{py}}$ (2), $\mathrm{KCp}^{\mathrm{py}(\mathrm{s})}$ (3), or $\mathrm{KCp}^{\prime \mathrm{py}}{ }^{(3)}$ (4). Compounds $1-4$ were readily converted into their homoleptic solvent-free ytterbium(II) complexes $\left[\mathrm{Yb}\left(\mathrm{Cp}^{p y}\right)_{2}\right](5),\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime p y}\right)_{2}\right](6),\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{py}(\mathrm{s})}\right)_{2}\right]$ (7) and $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime \mathrm{py}}{ }^{(8)}\right)_{2}\right]$ (8). The crystal structures of 5 and 8 show that both of the pyridyl groups in each complex are coordinated to the ytterbium. Some angles in 5 are $\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2) 137.7^{\circ}$ and $\mathrm{N}(1)-\mathrm{Yb}-\mathrm{N}(2) 100.8(2)^{\circ}$, and the corresponding angles in 8 are $\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2) 136.9^{\circ}$ and $\mathrm{N}(1)-\mathrm{Yb}-\mathrm{N}(2) 84.0(4)^{\circ}$ (where Cp refers to the centroid of the cyclopentadienyl ring).

Key words: Ytterbium; Ytterbocene; Lanthanides; Functionalized cyclopentadienyls; Crystal structure

1. Introduction

Almost all the known lanthanide ($\mathbf{L n}$) complexes containing two cyclopentadienyl rings (lanthanocene complexes) have one to three additional ligands in the $\mathrm{Ln}^{\mathrm{n}+}$ coordination sphere. This is consistent with the large size of the Ln^{2+} or Ln^{3+} radius. For many years no structurally characterized homoleptic lanthanocene(II) complex analogous to ferrocene was known.

The first monomeric unsolvated complexes of this type characterized by X-ray crystallography were those containing the pentamethylcyclopentadienyl ($\equiv \overline{\mathbf{C}} \mathrm{p}$) ligand. The solvent-free decamethyllanthanocene(II) complexes $\mathrm{LnCp}_{2}^{*}(\mathrm{Ln}=\mathrm{Sm}, \mathrm{Eu}$, or Yb$)$ were obtained

[^0]by desolvation during sublimation of the corresponding tetrahydrofuran (THF) [1,2] or diethyl ether (OEt_{2}) [3] solvates. Other lipophilic, homoleptic lanthanocene(II) complexes to have been isolated were $\mathrm{Yb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}\right)_{2}$ ($\mathrm{R}=\mathrm{SiMe}_{3}$ [4] or ${ }^{\mathrm{t}} \mathrm{Bu}$ [5]) and [$\left.\left(\mathrm{LnCp}_{2}^{\prime \prime}\right)_{\infty}\right]\left\{\mathrm{Cp}^{\prime \prime}=\right.$ $\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3$ and $\mathrm{Ln}=\mathrm{Sm}$ [6], Eu [7], or Yb [7]]. X-Ray diffraction data on the latter two compounds showed that they (like the LnCp_{2}^{*} analogues) were polymeric by virtue of weak intermolecular interactions, resulting in $\mathbf{L n}^{2+}$ being three-coordinate; e.g. each $\mathrm{YbCp}_{2}^{\prime \prime}$ unit and the methyl group of a neighbour had a close $\mathrm{Yb} \cdots \mathrm{CH}_{3}$ contact [7].

An alternative means of obtaining homoleptic lanthanocene(II) complexes, which is central to the present paper, is to use an appropriate Lewis base-functionalized cyclopentadienyl ligand. In the literature compounds containing such ligands have been reported previously, namely $\mathrm{Sm}\left[\eta-\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right]_{2}$ [8] and $\mathrm{Ln}\left[\eta-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)\right]_{2}(\mathrm{Ln}=\mathrm{Sm}$ or Yb$)[9]$,
but the crystal structures of these complexes are yet unknown. Ligands of this type already have a role in the chemistry of $\mathrm{Ln}^{\text {III }}$ complexes; the most recent examples relate to the X -ray characterized crystalline complexes $\left[\mathrm{Ln}(\mu-\mathrm{L}) \mathrm{L}_{2}\right]\left[\mathrm{L}=\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right.$ and $\mathrm{Ln}=\mathrm{La}$ or Nd$][10]$.

We report below an approach to homoleptic lanthanocene(II) complexes using the following potentially bidentate cyclopentadienyl ligands containing a pendant pyridyl substituent: $\left[\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)\right]^{-}$ $\left(\equiv{ }^{-} \mathrm{Cp}^{\mathrm{py}}\right), \quad\left[\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)-3\right]^{-}$ ($\equiv^{-} \mathrm{Cp}^{\prime \mathrm{py}}$), $\left[\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CMe}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)\right]^{-}\left[\equiv^{-} \mathrm{Cp}^{\mathrm{pys}(\mathrm{s})}\right]$, and $\left[\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{CMe}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)-3\right]^{-}\left[\equiv^{-} \mathrm{Cp}^{\prime \mathrm{py}(\mathrm{s})}\right]$. As a class, these ligands are not totally new, one of them having been employed in titanium(IV) chemistry [11].

2. Experimental details

2.1. Materials and procedures

All manipulations were carried out under vacuum or argon by Schlenk techniques. Solvents were dried and distilled over potassium-sodium alloy under argon prior to use. The following compounds were prepared by known procedures: YbI_{2} [12], $\mathrm{Cp}^{\mathrm{py}} \mathrm{H}$ [13], $\mathrm{Cp}^{\prime \mathrm{py}} \mathrm{H}$ [13] and $\mathrm{Cp}^{\prime \mathrm{py}(\mathrm{s})} \mathrm{H}$ [13], and $\mathrm{Cp}^{\prime \mathrm{py}(\mathrm{s})} \mathrm{H}$ [13]. Microanalyses were carried out by Medac Ltd (Brunel University) or in the micro-analytical department of the University of Sussex. NMR Spectra were recorded using Bruker WM250, Bruker WM360 or Bruker WM500 spectrometers.

2.2. Synthesis of $K C p^{p y}$ (1)

A solution of $\mathrm{Cp}^{\mathrm{py}} \mathrm{H}(4.50 \mathrm{~g}, 22.6 \mathrm{mmol})$ in THF (80 $\mathrm{ml})$ was slowly added to a stirred suspension of KH $(0.90 \mathrm{~g}, 22.4 \mathrm{mmol})$ in THF (40 ml) at $-50^{\circ} \mathrm{C}$. The suspension was stirred for 16 h while warming slowly to room temperature. Volatiles were removed in vacuo and the residue was washed with hexane (100 ml). After drying in vacuo, the white solid was shown to be 1 ($4.15 \mathrm{~g}, 17.5 \mathrm{mmol}, 80 \%$). Anal. Found: C, 72.1; H, 7.04; N, 6.17. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{KN}$ calc.: C, 70.8; H, 6.79; N , 5.90%. NMR: ${ }^{1} \mathrm{H}^{4}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}\right): \delta 1.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CMe}_{2}\right)$; 3.24 (s, 2H, CH ${ }_{2}$); 6.00 (t, 2H, Cp-ring); 6.24 (t, 2 H , Cp-ring); 6.97 (t, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.21 (d, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); $7.49\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) ; 8.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right.$, $20^{\circ} \mathrm{C}$); $\delta 31.86$ (q, $\mathrm{CMe}{ }_{2}$); 37.01 (s, CMe_{2}); 55.70 (t, CH_{2}); 102.74 (d, CH); 103.89 (d, CH); 120.81 (d, CH); 125.79 (d, CH); 128.99 (s, C); 135.52 (d, CH); 148.22 (d, CH), 162.47 (s, C).

2.3. Synthesis of $K C p^{\prime p y}$ (2)

A solution of $\mathrm{Cp}^{p \mathrm{py}} \mathrm{H}(17.9 \mathrm{~g}, 65.9 \mathrm{mmol})$ in THF (70 $\mathrm{ml})$ was added to a stirred solution of $\mathrm{KH}(2.6 \mathrm{~g}, 64.8$ mmol) in THF (30 ml) at $-78^{\circ} \mathrm{C}$. After 2 h stirring at
$-78^{\circ} \mathrm{C}$, the suspension was allowed to warm to room temperature with stirring, stirred at that temperature for 60 h and then refluxed for 1.5 h . The solvent was removed in vacuo, yielding a white solid, which was washed with hexane (50 ml) and dried in vacuo to afford $2(17.85 \mathrm{~g}, 57.7 \mathrm{mmol}, 89 \%)$ as a white powder. Anal. Found: C, 66.0; H, 7.61; N, 4.65. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{KNSi}$ calc.: C, $66.0 ; \mathrm{H}, 7.81 ; \mathrm{N}, 4.52 \%$. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O}\right.$, $25^{\circ} \mathrm{C}$): $\delta 0.02$ (s, $9 \mathrm{H}, \mathrm{SiMe}_{3}$); 1.20 (s, 6H, CMe_{2}); 2.77 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$); 5.1-5.7 (m, 3H, Cp-ring); 7.0-7.1 (m, 2 H , $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.5-7.6 (m, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 8.2-8.3 (m, 1 H , $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left(\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O}, 25^{\circ} \mathrm{C}\right): \delta 0.97\left(\mathrm{q}, \mathrm{SiMe}_{3}\right) ; 30.95$ (q, CMe_{2}); 35.94 (s, CMe_{2}); 54.57 (t, CH_{2}); 101.94 (d, CH); 102.87 (d, CH); 105.97 (d, CH); 108.43 (d, CH); 109.19 (s, C); 110.99 (d, CH); 120.34 (d, CH); 125.18 (d, CH); 128.19 (s, C); 131.52 (s, C); 135.01 (d, CH); 147.83 (d, CH); 161.38 (s, C). $\left.{ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}\right)\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 25^{\circ} \mathrm{C}\right) ; \delta$ $-14.63\left(\mathrm{SiMe}_{3}\right)$.

2.4. Synthesis of $K C p^{p y(s)}(3)$

A brown solution of $\mathrm{Cp}^{\mathrm{py}(\mathrm{s})} \mathrm{H}(6.55 \mathrm{~g}, 35.3 \mathrm{mmol})$ in THF (100 ml) was added to a suspension of KH $(1.37 \mathrm{~g}$, $34.2 \mathrm{mmol})$ in THF (100 ml) at $-78^{\circ} \mathrm{C}$. After 0.5 h at $-78^{\circ} \mathrm{C}$, the suspension was slowly warmed to room temperature and stirred for 60 h . Volatiles were removed in vacuo and the residue was washed with pentane (70 ml). After drying in vacuo, the beige solid $3(6.60 \mathrm{~g}, 29.5 \mathrm{mmol}, 86 \%)$ was isolated. Anal. Found: C, 70.1; H, 6.37; N, 6.14. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{KN}$ calc.: C, 69.9; H, 6.32 ; N, 6.27\%. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}\right): \delta 2.00$ (s, $6 \mathrm{H}, \mathrm{CMe}_{2}$); 6.08 (t, 2H, Cp-ring); 6.28 (t, 2H, Cp-ring); 6.86 (dd, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); $7.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.$); 8.46 (d, $\left.\left.1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}\right): \delta 31.95(\mathrm{q}, \mathrm{CMe})_{2}\right) ;$ 43.28 (s, CMe); 103.07 (d, CH); 104.16 (d, CH); 119.95 (d, CH); 123.07 (s, C); 130.43 (d, CH); 136.16 (d, CH); 148.59 (d, CH); 174.26 (s, C).

2.5. Synthesis of $K C p^{\prime p y(s)}$ (4)

A solution of $\mathrm{Cp}^{\prime p y(s)} \mathrm{H}(9.45 \mathrm{~g}, 36.7 \mathrm{mmol})$ in THF (50 ml) was added to a stirred suspension of KH (1.40 $\mathrm{g}, 34.9 \mathrm{mmol})$ in THF $(120 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The suspension was stirred for 70 h , while it slowly warmed to room temperature, yielding a brown solution. The solvent was removed in vacuo and the oily residue was washed with pentane ($2 \times 50 \mathrm{ml}$). After drying in vacuo, the beige solid $4(8.50 \mathrm{~g}, 28.8 \mathrm{mmol}, 78 \%)$ was obtained. Anal. Found: C, 65.0; H, 7.39; N, 4.74. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{KNSi}$ calc.: C, $65.0 ; \mathrm{H}, 7.50$; $\mathrm{N}, 4.74 \%$. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}\right): \delta 0.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right) ; 1.91(\mathrm{~s}, 6 \mathrm{H}$, CMe_{2}); 5.9-6.4 (m, 3H, Cp-ring); 6.85-6.95 (m, 1H, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.45-7.6 (m, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); $8.50(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 25^{\circ} \mathrm{C}\right): \delta 2.03\left(\mathrm{q}, \mathrm{SiMe}_{3}\right) ; 31.81$ (q, CMe_{2}); 43.07 (s, CMe_{2}); 103.05 (d, CH); 104.11 (d, CH); 107.03 (d, CH); 109.29 (s, C); 109.73 (d, CH);
112.32 (d, CH); 119.44 (d, CH); 120.15 (d, CH); 130.73 (s, C); 133.86 (d, CH); 148.87 (d, CH); 173.64 (s, C). $\left.{ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 25^{\circ} \mathrm{C}\right) ; \delta-14.43\left(\mathrm{SiMe}_{3}\right)$.

2.6. Synthesis of $\left[\mathrm{Yb}\left(\mathrm{Cp}^{p y}\right)_{2}\right](5)$

A dark green suspension of $\mathrm{YbI}_{2}(1.9 \mathrm{~g}, 4.45 \mathrm{mmol})$ and $\mathbf{1}(2.09 \mathrm{~g}, 8.80 \mathrm{mmol})$ in THF (100 ml) was stirred at room temperature for 18 h . The solid was allowed to settle and the supernatant liquid was decanted and filtered. The filtrate was concentrated and cooled to $-30^{\circ} \mathrm{C}$, yielding dark green crystals of $5(1.08 \mathrm{~g}, 1.90$ mmol, 43\%). Anal. Found: C, 59.1; H, 6.03; N, 5.15. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Yb}$ calc.: C, 59.0; H, 5.66; $\mathrm{N}, 4.92 \%$. NMR: ${ }^{1} \mathrm{H}^{2}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}\right): \delta 1.29\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CMe}_{2}\right) ; 3.01(\mathrm{~s}, 4 \mathrm{H}$, CH_{2}); 5.81 (s, $4 \mathrm{H}, \mathrm{Cp}$-ring); 6.00 (s, $4 \mathrm{H}, \mathrm{Cp}$-ring); 7.15 (t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.30 (d, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.93 (t, 2 H , $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 8.38 (d, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left(\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O}, 25^{\circ} \mathrm{C}\right): \delta$ 30.71 (q, CMe_{2}); 35.52 ($\mathrm{s}, \mathrm{CMe}_{2}$); 55.47 (t, CH_{2}); 102.93 (d, CH); 105.41 (d, CH); 122.43 (d, CH); 128.59 (d, CH); 130.87 (s, C); 137.82 (d, CH); 147.57 (d, CH); $162.18(\mathrm{~s}, \mathrm{C}) .{ }^{171} \mathrm{Yb}\left({ }^{1} \mathrm{H}\right)\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{THF}, 31^{\circ} \mathrm{C}\right): \delta 456.9$ ($w_{1 / 2} \approx 35 \mathrm{~Hz}$).

2.7. Synthesis of $\left[Y b\left(C_{p}^{\prime p y}\right)_{2}\right]$ (6)

A solution of $2(1.80 \mathrm{~g}, 5.81 \mathrm{mmol})$ in THF (50 ml) was added to $\mathrm{YbI}_{2}(1.66 \mathrm{~g}, 3.90 \mathrm{mmol})$ at room temperature. The dark green suspension was stirred for 16 h , the solvent then removed in vacuo, and the residue extracted with toluene. The dark green extract was concentrated and cooled to $-30^{\circ} \mathrm{C}$ to afford dark green, crystalline $6(1.55 \mathrm{~g}, 2.20 \mathrm{mmol}, 75 \%)$. Recrystallization from hexane gave cubic crystals. Anal. Found: C, 57.1; $\mathrm{H}, 6.77$; $\mathrm{N}, 3.93 . \mathrm{C}_{34} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{Si}_{2} \mathrm{Yb}$ calc.: $\mathrm{C}, 57.2$; $\mathrm{H}, 6.78$; $\mathrm{N}, 3.92 \%$. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{7} \mathrm{D}_{8}, 40^{\circ} \mathrm{C}\right): \delta 0.07(\mathrm{~s}$, $18 \mathrm{H}, \mathrm{SiMe}_{3}$); 1.04 (s, 6H, CMe); 1.30 (s, $6 \mathrm{H}, \mathrm{CMe}$); 2.61 (d, $2 \mathrm{H}, \mathrm{CH}$); 3.12 (d, 2H, CH); 5.60 (s, 2 H , Cp-ring); 6.18 (s, $2 \mathrm{H}, \mathrm{Cp}$-ring); 6.31 (m, $2 \mathrm{H}, \mathrm{Cp}$-ring); 6.64 (m, 4H, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.13 (t, 2H, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 8.13 (s, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{13} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{THF}, 25^{\circ} \mathrm{C}\right): \delta 0.58(\mathrm{q}$, SiMe_{3}); 27.09 (q, CMe CH_{2}; 35.41 (s, CMe_{2}); 54.97 (t, CH_{2}); 111.16 (s, C); 112.63 (d, CH); 115.47 (d, CH); 121.60 (d, CH); 128.39 (d, CH); 134.80 (s, C); 137.80 (d, CH); 138.07 (d, CH); 148.38 (d, CH); 161.95 (s, C). $\left.{ }^{29} \mathrm{Si}^{1}{ }^{1} \mathrm{H}\right)\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}, 20^{\circ} \mathrm{C}\right) ; \quad \delta \quad-12.71 \quad\left(\mathrm{SiMe}_{3}\right)$. ${ }^{171} \mathrm{Yb}\left\{{ }^{1} \mathrm{H}\right\} \quad\left(\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O} / \mathrm{THF}, 31^{\circ} \mathrm{C}\right): \delta 543.7\left(w_{1 / 2} \approx 25\right.$ Hz).

2.8. Synthesis of $\left[\mathrm{Yb}\left(\mathrm{Cp}^{p y(s)}\right)_{2}\right]$ (7)

A dark green suspension of $\mathrm{YbI}_{2}(1.25 \mathrm{~g}, 2.93 \mathrm{mmol})$ and $3(1.30 \mathrm{~g}, 5.82 \mathrm{mmol}$) in THF (80 ml) was stirred at room temperature for 24 h . The solid material was allowed to settle. The supernatant liquid was decanted and filtered. The filtrate was concentrated and cooled to $-30^{\circ} \mathrm{C}$ to yield the dark green solid $7(1.70 \mathrm{~g}, 3.14$
mmol, 54%). Recrystallization from a toluene / pentane mixture gave dark green crystals. Anal. Found: C, 57.8; $\mathrm{H}, 5.26 ; \mathrm{N}, 4.95 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Yb}$ calc.: $\mathrm{C}, 57.7 ; \mathrm{H}, 5.21 ; \mathrm{N}$, 5.17%. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}\right): \delta 1.85$ (s, 12 H , CMe_{2}); 5.95 (s, 4H, Cp-ring); 6.20 (s, 4H, Cp-ring); 6.80 (t, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 7.56 (d, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); $7.70(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 8.14 (br. s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$). ${ }^{13} \mathrm{C}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 25^{\circ} \mathrm{C}\right.$); $\delta 31.95$ (q, CMe ${ }^{2}$); 43.40 ($\mathrm{s}, \mathrm{CMe}_{2}$); 104.47 (d, CH); 106.11 (d, CH); 120.38 (d, CH); 121.70 (d, CH); 128.67 (s, C); 136.56 (d, CH); 148.47 (d, CH); 175.39 (s, C). ${ }^{171} \mathrm{Yb}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 31^{\circ} \mathrm{C}\right): \delta 594.6\left(w_{1 / 2} \approx 150\right.$ Hz).

2.9. Synthesis of $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime p y(s)}\right)_{2}\right](8)$

A dark green suspension of $\mathrm{YbI}_{2}(1.35 \mathrm{~g}, 3.16 \mathrm{mmol})$ and $4(1.80 \mathrm{~g}, 6.09 \mathrm{mmol})$ in THF (100 ml) was stirred at room temperature for 17 h . Volatiles were removed in vacuo and the residue was extracted with toluene (50 ml). The dark green solution was layered with pentane and cooled to $-30^{\circ} \mathrm{C}$, yielding the dark green solid $8(1.8 \mathrm{~g}, 2.62 \mathrm{mmol}, 86 \%)$. Anal. Found: C, 56.5 ; $\mathrm{H}, 6.51 ; \mathrm{N}, 4.02 . \mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{Si}_{2} \mathrm{Yb}$ calc.: C, $56.0 ; \mathrm{H}$, 6.47 ; N, 4.08%. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right): \delta 0.27(\mathrm{~s}, 18 \mathrm{H}$, SiMe_{3}); 1.64 (s, 12H, CMe_{2}); 6.01 (t, 2H, Cp-ring); 6.20 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Cp}$-ring); 6.40 (t, $2 \mathrm{H}, \mathrm{Cp}$-ring); 6.84 (t, 2 H , $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 6.93 (d, $4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$); 8.19 (d, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$). ${ }^{13} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}, 25^{\circ} \mathrm{C}\right): \delta 0.96\left(\mathrm{q}, \mathrm{SiMe}_{3}\right)$; $31.45(\mathrm{q}$, $\mathrm{CMe} \mathrm{C}_{2}$), 43.24 ($\mathrm{s}, \mathrm{CMe}_{2}$); 108.46 (d, CH); 112.60 (d, CH); 114.36 (d, CH); 114.57 (s, C); 120.63 (d, CH); 122.12 (d, CH); 134.03 (s, C); 136.85 (d, CH); 147.44 (d, CH); $177.75(\mathrm{~s}, \mathrm{C}){ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right)\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}, 25^{\circ} \mathrm{C}\right): \delta$ $-12.50\left(\mathrm{SiMe}_{3}\right) .{ }^{171} \mathrm{Yb}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{H}_{6}, 31^{\circ} \mathrm{C}\right): \delta$ $851.0\left(w_{1 / 2} \approx 30 \mathrm{~Hz}\right)$.

2.10. X-Ray structure determination for $\left[\mathrm{Yb}\left(\mathrm{Cp}^{p y}\right)_{2}\right]$
 (5) and $\left[Y b\left(C p^{\prime P y(s)}\right)_{2}\right](8)$

In each case, unique data sets were collected from a crystal sealed in a capillary under argon on an EnrafNonius CAD4 diffractometer in the $\theta-2 \theta$ mode with monochromated Mo-K α radiation ($\lambda=0.71069 \AA$). Two standard reflections monitored every hour showed no significant change. Data were corrected for Lorentz and polarization effects (Lp) and also for absorption using difabs [14] after isotropic refinement. Reflections with $\left|F^{2}\right|>2 \sigma\left(F^{2}\right)$, where $\sigma\left(F^{2}\right)=\left\{\sigma^{2}(I)+\right.$ $\left.(0.04 I)^{2}\right\}^{1 / 2} / \mathrm{Lp}$ were considered observed.

Each structure was solved using the heavy atom routines of shelxs-86 [15]. Non-hydrogen atoms were refined with anisotropic thermal parameters by fullmatrix least-squares using programs from the EnrafNonius Molen package. The hydrogen atoms were held fixed at calculated positions with $U_{\mathrm{iso}}=1.3 U_{\text {eq }}$ for the parent atom. For each structure, the absolute

TABLE 1. X-Ray crystal structure details

	$\left[\mathrm{Yb}\left(\mathrm{Cp}^{\text {py }}\right)_{2}\right](5)$	$\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime p \mathrm{py}}{ }^{(8)}\right)_{2}\right](8)$
Formula	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Yb}$	$\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{Si}_{2} \mathrm{Yb}$
M	569.6	685.9
Crystal system, space group	Orthorhombic, $\mathrm{P}_{2} \mathrm{~L}_{1} \mathbf{2}_{1}$	Orthorhombic, Fdd2
$a, b, c(\AA)$	7.713(8), 17.486(4), 17.734(4)	23.189(4), 46.209(6), 13.141(2)
$U\left(\AA^{3}\right), Z, D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2391.7, 4, 1.58	14080.9, 16, 1.29
$F(000)$	1136	5568
$\mu\left(\mathrm{Mo}-\mathrm{K} \alpha\right.$) cm^{-1})	39.1	27.3
Crystal size (mm^{3})	$0.4 \times 0.3 \times 0.03$	$0.4 \times 0.4 \times 0.1$
Total unique reflections, ($\theta_{\text {max }}=25^{\circ}$)	2424	3374
Significant reflections, $\left\|F^{2}\right\|>2 \sigma\left\|F^{2}\right\|$	2048	2661
Number of variables	280	334
$R, R^{\prime a}$	0.029, 0.034	0.058, 0.061

${ }^{a} R=\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right) /\left(\sum w\left(\left|F_{\mathrm{o}}\right|\right) ; R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(\sum w\left(\left|F_{\mathrm{o}}\right|^{2}\right)\right]^{1 / 2}\right.\right.$.
structure was checked by refinement of both alternatives and the results quoted are for the prefered absolute structure.

TABLE 2. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{py}}\right)_{2}\right](5)$

	\boldsymbol{x}	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Yb1	1367.9(5)	569.5(2)	1187.6(2)	30.3(1)
N(1)	-696(10)	664(4)	2266(4)	36(4)
N(2)	3314(9)	-453(4)	1639(4)	33(4)
C(1)	-771(14)	89(6)	2779(6)	47(6)
C(2)	-1641(13)	152(6)	3461(6)	47(6)
C(3)	-2461(14)	814(7)	3612(5)	54(7)
C(4)	-2470(14)	1390(6)	3101(5)	44(6)
C(5)	-1589(12)	1313(5)	2419(5)	35(5)
C(6)	-1540(14)	1911(6)	1821(5)	42(5)
C(7)	-19(13)	2468(6)	1790(5)	38(5)
C(8)	1669(12)	2068(5)	1582(4)	30(5)
C(9)	2391(13)	1993(6)	857(5)	40(5)
C(10)	3885(14)	1567(7)	893(6)	52(6)
C(11)	4096(13)	1363(6)	1651(6)	45(6)
C(12)	2769(13)	1646(6)	2069(5)	37(5)
C(13)	-474(4)	3067(6)	1195(7)	57(6)
C(14)	159(15)	2870(6)	2552(6)	48(6)
C(15)	3583(15)	-453(6)	2392(5)	49(6)
C(16)	4476(15)	- 1016(7)	2768(5)	51(6)
C(17)	5157(15)	- 1617(7)	2378(6)	55(6)
C(18)	4988(15)	- 1604(7)	1608(6)	54(7)
C(19)	4109(11)	- 1018(5)	1238(5)	39(5)
C(20)	3946(14)	-986(6)	382(5)	46(6)
C(21)	2195(14)	-1185(6)	39(5)	38(5)
C(22)	883(12)	-530(6)	121(4)	40(5)
C(23)	936(17)	170(7)	-250(5)	59(7)
C(24)	-461(16)	584(9)	-68(6)	74(7)
C(25)	- 1453(16)	156(8)	419(6)	77(7)
C(26)	-625(13)	-540(7)	541(5)	51(5)
C(27)	2506(17)	-1341(7)	-813(6)	63(7)
C(28)	1530(17)	-1929(7)	378(6)	63(7)

[^1]TABLE 3. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Yb}\left(\mathrm{Cp}^{p \mathrm{py}(3)}\right)_{2}\right](8)$

	\boldsymbol{x}	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Yb	2436.1(2)	614.9(1)	0.0	56(1)
Si(1)	3827.8(21)	112.6(12)	27.6 (65)	98(4)
Si(2)	1820.9(29)	1123.3(14)	2211.3(49)	108(4)
N(1)	2572(5)	735(3)	- 1809(11)	71(8)
N(2)	1437(6)	507(2)	-528(10)	66(8)
C(1)	2345(7)	1093(3)	1165(13)	66(9)
C(2)	2289(6)	1189(3)	205(12)	57(8)
C(3)	2842(7)	1148(3)	-342(14)	72(10)
C(4)	3220(6)	1029(3)	305(12)	68(10)
C(5)	2936(8)	996(3)	1242(14)	86(11)
C(6)	2924(7)	1234(3)	-1471(12)	$70(10)$
C(7)	2589(11)	1517(4)	- 1725(19)	127(17)
C(8)	3562(8)	1282(5)	-1637(21)	149(17)
C(9)	2730(6)	996(3)	- 2220 (11)	63(9)
C(10)	2711(9)	1042(4)	-3224(14)	97(13)
C(11)	2540(9)	826(5)	- 3918(16)	118(16)
O(12)	2382(8)	564(3)	- 3489(15)	88(12)
C(13)	2425(7)	536(4)	- 2509 (16)	91(12)
C(14)	2033(16)	885(6)	3294(20)	237(26)
C(15)	1826(19)	1486(6)	2788(30)	349(34)
C(16)	1138(12)	988(12)	1897(31)	443(43)
C(17)	3064(6)	145(3)	322(12)	68(10)
C(18)	2595(8)	46(3)	-198(17)	85(13)
C(19)	2068(6)	74(2)	334(10)	47(7)
C(20)	2244(8)	176(4)	1272(12)	77(11)
C(21)	2837(8)	221(3)	1287(14)	82(11)
C(22)	1476(7)	-1(3)	-21(12)	65(9)
C(23)	1504(9)	-253(4)	-765(20)	129(16)
C(24)	1097(9)	-97(5)	876(20)	130(16)
C(25)	1165(7)	257(4)	-543(14)	75(11)
C(26)	661(8)	223(4)	- 1071(23)	156(17)
C(27)	388(9)	444(4)	- 1502(24)	140(17)
C(28)	651(8)	715(3)	- 1422(19)	105(13)
C(29)	1133(7)	738(3)	-929(14)	71(10)
$\mathrm{C}(30)$	4032(9)	-268(5)	-160(43)	273(32)
C(31)	4253(10)	257(6)	1086(22)	155(22)
C(32)	4005(12)	336(6)	- 1114(21)	171(23)

TABLE 4. Selected intramolecular distances (\AA) and angles (${ }^{\circ}$) with estimated standard deviations in parentheses for $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{py}}\right)_{2}\right](5)^{\text {a }}$

Bonds			
$\mathbf{Y b}-\mathrm{Cp}(1)$	2.401	$\mathrm{Yb}-\mathrm{Cp}(2)$	2.415
$\mathrm{Yb}-\mathrm{N}(1)$	$2.494(7)$	$\mathrm{Yb}-\mathrm{N}(2)$	$2.469(7)$
$\mathrm{Yb}-\mathrm{C}(8)$	$2.723(9)$	$\mathrm{Yb}-\mathrm{C}(22)$	$2.722(9)$
$\mathrm{Yb}-\mathrm{C}(9)$	$2.677(9)$	$\mathrm{Yb}-\mathrm{C}(23)$	$2.664(9)$
$\mathrm{Yb}-\mathrm{C}(10)$	$2.661(11)$	$\mathrm{Yb}-\mathrm{C}(24)$	$2.635(11)$
$\mathrm{Yb}-\mathrm{C}(11)$	$2.651(10)$	$\mathrm{Yb}-\mathrm{C}(25)$	$2.667(12)$
$\mathrm{Yb}-\mathrm{C}(12)$	$2.674(10)$	$\mathrm{Yb}-\mathrm{C}(26)$	$2.728(11)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.406(12)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.39(2)$
$\mathrm{C}(8)-\mathrm{C}(12)$	$1.419(13)$	$\mathrm{Q}(22)-\mathrm{C}(26)$	$1.381(13)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.37(2)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.34(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.399(14)$	$\mathrm{O}(24)-\mathrm{C}(25)$	$1.37(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.357(14)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.39(2)$
Angles			
$\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2)$	137.7	$\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{N}(1)$	98.3
$\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{N}(2)$	104.2	$\mathrm{Cp}(2)-\mathrm{Yb}-\mathrm{N}(1)$	107.7
$\mathrm{Cp}(2)-\mathrm{Yb}-\mathrm{N}(2)$	103.0	$\mathrm{~N}(1)-\mathrm{Yb}-\mathrm{N}(2)$	$100.8(2)$

${ }^{\text {a }} \mathrm{Cp}(1)$ and $\mathrm{Cp}(2)$ are the centroids of the cyclopentadienyl rings $C(8)$ to $C(12)$ and $C(22)$ to $C(26)$, respectively.

TABLE 5. Selected intramolecular distances ((\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses for $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime \mathrm{pys}(\mathrm{s})}\right)_{2}\right](8)^{\text {a }}$

Bonds			
$\mathbf{Y b}-\mathrm{Cp}(1)$	2.40	$\mathrm{Yb}-\mathrm{Cp}(2)$	2.39
$\mathbf{Y b}-\mathrm{N}(1)$	$2.462(15)$	$\mathrm{Yb}-\mathrm{N}(2)$	$2.470(13)$
$\mathrm{Yb}-\mathrm{C}(1)$	$2.698(15)$	$\mathrm{Yb}-\mathrm{C}(17)$	$2.65(2)$
$\mathrm{Yb}-\mathrm{C}(2)$	$2.687(13)$	$\mathrm{Yb}-\mathrm{C}(18)$	$2.670(14)$
$\mathrm{Yb}-\mathrm{C}(3)$	$2.676(14)$	$\mathrm{Yb}-\mathrm{C}(19)$	$2.678(11)$
$\mathrm{Yb}-\mathrm{C}(4)$	$2.671(14)$	$\mathrm{Yb}-\mathrm{C}(20)$	$2.67(2)$
$\mathrm{Yb}-\mathrm{C}(5)$	$2.67(2)$	$\mathrm{Yb}-\mathrm{C}(21)$	$2.65(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.34(2)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.37(2)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.45(2)$	$\mathrm{O}(17)-\mathrm{C}(21)$	$1.42(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.48(2)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.41(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.34(2)$	$\mathrm{C}(9)-\mathrm{C}(20)$	$1.38(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.40(2)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.39(3)$
Angles			
$\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2)$	136.9	$\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{N}(1)$	91.7
$\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{N}(2)$	121.9	$\mathrm{Cp}(2)-\mathrm{Yb}-\mathrm{N}(1)$	121.0
$\mathrm{Cp}(2)-\mathrm{Yb}-\mathrm{N}(2)$	91.1	$\mathrm{~N}(1)-\mathrm{Yb}-\mathrm{N}(2)$	$84.0(4)$

${ }^{a} \mathrm{Cp}(1)$ and $\mathrm{Cp}(2)$ are the centroids of the cyclopentadienyl rings $C(1)$ to $C(5)$ and $Q(17)$ to $C(21)$, respectively.

Further details are given in Table 1. Atom positions are listed in Tables 2 and 3, and selected bond lengths and angles are given in Tables 4 and 5 . Complete lists of bond lengths and angles and tables of H atom positions and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

3. Results and discussion

3.1. The potassium cyclopentadienyl complexes 1-4

The potassium cyclopentadienyl complexes $\mathrm{KCp}^{\mathrm{py}}$ (1), $\mathrm{KCp}^{\prime \mathrm{py}}$ (2), $\mathrm{KCp}^{\mathrm{py}(\mathrm{s})}$ (3), and $\mathrm{KCp}^{\prime \mathrm{py}(\mathrm{s})}$ (4) were

synthesized by treating KH with $\mathrm{Cp}^{\mathrm{py}} \mathrm{H}, \mathrm{Cp}^{\prime p y} \mathrm{H}$, $\mathrm{C}{ }^{\mathrm{py}(\mathrm{s})} \mathrm{H}$, or $\mathrm{Cp}^{\prime{ }^{\prime p y(s)}} \mathrm{H}$, respectively (eqn. (1)). Compounds 1-4 were isolated as off-white or beige powders in good yields ($1,80 \% ; 2,89 \% ; 3,86 \% ; 4,78 \%$).

The potassium cyclopentadienyls $1-4$ were shown to have varying solubilities: $\mathrm{KCp}^{\mathrm{py}}$ (1) and $\mathrm{KCp}^{\mathrm{py}(\mathrm{s})}$ (3) were insoluble in aromatic solvents and only slightly soluble in pyridine, whereas the SiMe_{3}-substituted cyclopentadienyls $\mathrm{KCp}^{\prime \mathrm{py}}$ (2) and $\mathrm{KCp}^{\prime \text { py(s) }}$ (4) were very soluble in THF or pyridine and even slightly soluble in aromatic hydrocarbon solvents. Characterization of 1-4 by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ (2 and 4 only) NMR spectroscopy showed that no solvent molecules were coordinated to the potassium in 1-4, and this was confirmed by elemental ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) analysis.

3.2. The synthesis, characterization, and X-ray structure of $\left[\mathrm{Yb}\left(\mathrm{Cp}^{p y}\right)_{2}\right]$ (5)

The reaction of ytterbium(II) iodide with two equivalents of $\mathrm{KCp}^{\mathrm{py}}$ (1) in THF afforded a dark green solution. After filtration, cooling of the filtrate gave $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{py}}\right)_{2}\right]$ (5) as dark green prisms (eqn. (2)).

$$
\begin{equation*}
2 \mathrm{KCp}^{\mathrm{py}}+\mathrm{YbI}_{2} \xrightarrow{\mathrm{THF}}\left[\mathrm{Yb}\left(\eta-\mathrm{Cp}^{\mathrm{py}}\right)_{2}\right] \tag{2}
\end{equation*}
$$

The ytterbocene(II) complex (5) was highly soluble in THF or pyridine, but insoluble in aromatic hydrocarbon solvents. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ showed that there was no THF coordinated to the ytterbium centre. Elemental ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) analyses were also consistent with 5 being unsolvated. Compound 5 was further characterized by ${ }^{13} \mathrm{C}$ and ${ }^{171} \mathrm{Yb}\left({ }^{1} \mathrm{H}\right\}$ [16] NMR spectroscopy, and a single crystal X-ray diffraction study.

The molecular structure and atom numbering scheme for crystalline $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{py}}\right)_{2}\right]$ (5) are shown in Fig. 1; selected bond lengths and angles are listed in Table 4.

Fig. 1. X-Ray molecular structure and atom labelling for $[\mathrm{Yb}\{\eta$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)\right\}_{2}$] (5).

The structure of 5 involves a distorted tetrahedral arrangement of the ligands around the metal with $\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2) \quad 137.7^{\circ}$ and $\mathrm{N}(1)-\mathrm{Yb}-\mathrm{N}(2) \quad 100.8^{\circ}$ [$\mathrm{Cp}(1)$ is the centroid of $\mathrm{C}(8)-\mathrm{C}(12), \mathrm{Cp}(2)$ of $\mathrm{C}(22)-$ $\mathrm{C}(26)]$. The $\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2)$ angle is similar to those found in $\left[\mathrm{YbCp}_{2}^{*}(\mathrm{py})_{2}\right]\left(136.3^{\circ}\right)$ [17], $\left[\mathrm{Yb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\left.\left.\mathrm{SiMe}_{3}\right)_{2}(\mathrm{THF})_{2}\right]\left(133^{\circ}\right)[4]$, or $\left[\mathrm{Yb}\left(\mathrm{Cp}_{2}^{\prime \prime}\right)_{\infty}\right]\left(138^{\circ}\right)[7]$. The linking of the pyridyl rings to the cyclopentadienyl ligands results in: (i) a substantially wider $\mathrm{N}(1)-\mathrm{Yb}-$ $\mathrm{N}(2)$ angle in 5 than in $\left[\mathrm{YbCp}_{2}^{*}(\mathrm{py})_{2}\right]\left(82.5^{\circ}\right)$ [17] and (ii) slightly longer $\mathrm{Yb}-\mathrm{C}$ distances on the side of the pyridyl link (see Table 4). The mean $\mathrm{Yb}-\mathrm{C}$ bond length of $2.68 \AA$ in 5 may be compared with $2.74 \AA$ in $\left[\mathrm{YbCp}_{2}^{*}(\mathrm{py})_{2}\right][17]$ and $2.75 \AA$ in $\left[\mathrm{Yb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{)_{-}^{-}}\right.$ $\left.(\mathrm{THF})_{2}\right]$ [4], while the mean $\mathrm{Yb}-\mathrm{N}$ distance of $2.48 \AA$ in 5 is shorter than the $2.57 \AA$ in $\left[\mathrm{YbCp}_{2}^{*}(\mathrm{py})_{2}\right][17]$ and $2.55 \AA$ in $\left[\mathrm{YbCp}_{2}^{*}(\mathrm{THF})\left(\mathrm{NH}_{3}\right)\right.$ [18]; see also Table 6.

To a first approximation, the crystalline complex 5 seems to be symmetrical, but closer examination of the conformation of the two pyridyl groups shows that they are bonded differently. For one pyridyl ring, the Cp -
$\mathrm{Yb}-\mathrm{N}$ angles are 98.3 and 107.7° while for the other they are 104.2 and 103.0°.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in $\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ showed a singlet for the CMe_{2} group ($\delta 1.29$), a singlet for the CH_{2} group ($\delta 3.01$) and two singlets for the Cp-ring protons ($\delta 5.81$ and 6.00). At $-75^{\circ} \mathrm{C}$, the two sets of methyl, CH_{2}, and the Cp-ring protons were found to be inequivalent. Thus, a doublet was observed for the CMe_{2} and CH_{2} groups, and two doublets for the Cp -ring protons. The positions of the signals from the pyridyl groups remained unchanged over this temperature range and only one set of resonances was observed for both pyridyl groups. In solution, as in the solid state, both pyridyl groups are evidently coordinated to the ytterbium centre. However, it appears that a low $\mathrm{Yb}-\mathrm{N}$ rotational barrier allows the pyridyl groups to become equivalent even at low temperature.

3.3. The synthesis and characterization of $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime p y}\right)_{2}\right]$

 (6), $\left[\mathrm{Yb}\left(C p^{p y(s)}\right)_{2}\right]$ (7) and $\left[Y b\left(C p^{\prime p y(s)}\right)_{2}\right]$ (8)The ytterbocene(II) complexes 6-8 were each made in the way used for 5 (eqn. (3)). The reaction of YbI_{2} with two equivalents of 2,3 , or 4 afforded a dark green suspension in each case. Crystallization from toluene yielded 6-8 as crystalline powders. Recrystallizing from petroleum ether (6) or a toluene/petroleum ether mixture ($\mathbf{7}$ or 8) yielded the ytterbocene(II) complexes 6-8 as dark green crystals.

Compounds $6-8$ were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, ${ }^{29} \mathrm{Si}\left({ }^{1} \mathrm{H}\right)$ (6 and 8), and ${ }^{171} \mathrm{Yb}\left({ }^{1} \mathrm{H}\right)$ NMR spectroscopy. These data and elemental ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) analyses were consistent with their formulation as unsolvated complexes.

$$
\begin{array}{rc}
2 \mathrm{KCp}^{\mathrm{x}}+\mathrm{YbI}_{2} \xrightarrow{\mathrm{THF}} & {\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{x}}\right)_{2}\right]} \tag{3}\\
\text { 6: } \mathrm{Cp}^{\mathrm{x}}=\mathrm{Cp}^{\prime \mathrm{py}} \\
\text { 7: } \mathrm{Cp}^{\mathrm{x}}=\mathrm{Cp}^{\mathrm{py}(\mathrm{~s})} \\
\text { 8: } \mathrm{Cp}^{\mathrm{x}}=\mathrm{Cp}^{\prime \mathrm{py}(\mathrm{~s})}
\end{array}
$$

3.4. The X-ray structure of $\left[Y b\left(C p^{p y(s)}\right)_{2}\right]$ (8)

The molecular structure and atom numbering scheme for $\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime p y(s)}\right)_{2}\right]$ (8) are shown in Fig. 2; selected bond lengths and angles are listed in Table 5,

TABLE 6. Selected geometric parameters in some crystalline four-coordinate ytterbocene(II) complexes

Complex	$\langle\mathrm{Yb}-\mathrm{C}\rangle$ (Å)	$\langle\mathrm{Yb}-\mathrm{N}\rangle$ (A)	$\begin{aligned} & \mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2) \\ & \left(^{\circ}\right) \end{aligned}$	$\begin{aligned} & \mathrm{N}(1)-\mathrm{Yb}-\mathrm{N}(2) \\ & \left(^{\circ}\right) \end{aligned}$	Ref:
$\left[\mathrm{Yb}\left(\mathrm{Cp}^{\mathrm{py}}\right)_{2}\right](5)$	2.68(1)	2.48(1)	137.7	100.8(2)	This work
$\left[\mathrm{Yb}\left(\mathrm{Cp}^{\prime \mathrm{py}(\mathrm{s})}\right)_{2}\right](8)$	2.68(2)	2.47(1)	136.9	84.0(4)	This work
$\left[\mathrm{YbCp}{ }_{2}^{*}(\mathrm{py})_{2}\right]$	2.74(4)	2.56(1)	136.3(3)	82.5(2)	17
$\left[\mathrm{Yb}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{2}(\mathrm{THF})_{2}\right]$	2.75	-	133	-	4
$\left[\mathrm{YbCp}_{2}^{*}(\mathrm{THF})\left(\mathrm{NH}_{3}\right)\right]$	2.77(4)	2.55(3)	139.31	87.5(9) ${ }^{\text {a }}$	18

[^2]

Fig. 2. X-Ray molecular structure and atom labelling for [Yb($\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{CMe}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-2\right)-1,3 \mathrm{~J}_{2}\right]$ (8).
with some comparative data on 5 and three other four-coordinate ytterbocene(II) complexes in Table 6.

The molecular structure of crystalline 8 resembles that of $\mathbf{5}$ in having a distorted tetrahedral arrangement of the ligands around the metal with $\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2)$ 136.9° and $\mathrm{N}(1)-\mathrm{Yb}-\mathrm{N}(2) 84.0^{\circ}[\mathrm{Cp}(1)$ is the centroid of $\mathrm{C}(1)-\mathrm{C}(5), \mathrm{Cp}(2)$ or $\mathrm{C}(17)-\mathrm{C}(21)]$. The $\mathrm{Cp}(1)-\mathrm{Yb}-$ $\mathrm{Cp}(2)$ angle is similar to those found in $5,\left[\mathrm{YbCp}_{2}^{*}(\mathrm{py})_{2}\right]$ (136.3 $\left.{ }^{\circ}\right)$ [17] and $\left[\left(\mathrm{YbCp}_{2}^{\prime \prime}\right)_{\infty}\right]\left(138^{\circ}\right)$ [7], while the magnitude of the angle $\mathrm{N}(1)-\mathrm{Yb}-\mathrm{N}(2)$ is similar to that in $\left[\mathrm{YbCp}_{2}^{*}(\mathrm{py})_{2}\right]\left(82.5^{\circ}\right)$ [17], but significantly narrower than that in $5\left(100.8^{\circ}\right)$.

Compared with 5, complex 8 has two different features in its ligand system: (i) an SiMe_{3}-substituent and (ii) only one carbon atom linking the pyridyl rings with the cyclopentadienyl ligands. Feature (i) has no significant effect on $\mathrm{Cp}(1)-\mathrm{Yb}-\mathrm{Cp}(2)$, but the shorter link between the pyridyl rings to the cyclopentadienyl ligands in 8 results in a substantially smaller $\mathrm{N}(1)-\mathrm{Yb}-$ $\mathrm{N}(2)$ angle (84.0) than in $5\left(100.8^{\circ}\right)$.

Feature (ii) also has a pronounced effect on the orientation of the pyridyl rings with respect to the cyclopentadienyls (cf. Figs. 1 and 2). For one pyridyl ring, in 8 the $\mathrm{Cp}-\mathrm{Yb}-\mathrm{N}$ angles are 91.7° and 121.0° (5 98.3 and 107.1°), compared with 91.7° and 121.9° (5 104.2 and 103.0°) for the other ring.

Acknowledgements

We thank Shell Research BV (Koninklijke/ShellLaboratorium, Amsterdam) for providing a studentship to J.R.v.d.H. (and Dr. R.W. Chorley for his support and interest) and the SERC for other support.

References

1 W.J. Evans, L.A. Hughes and T.P. Hanusa, J. Am. Chem. Soc., 106 (1984) 4270.
2 W.J. Evans, L.A. Hughes and T.P. Hanusa, Organometallics, 5 (1986) 1285.

3 C.J. Burns, Ph.D. Thesis, University of California, Berkeley, 1987.
4 M.F. Lappert, P.I.W. Yarrow, J.L. Atwood, R. Shakir and J. Holton, J. Chem. Soc., Chem. Commun., (1980) 987.
5 Q. Shen, D. Zheng, L. Lin and Y. Lin, J. Organomet. Chem., 391 (1990) 321.

6 W.J. Evans, R.A. Keyer and J.W. Ziller, J. Organomet. Chem., 394 (1990) 87.
7 P.B. Hitchcock, J.A.K. Howard, M.F. Lappert and S. Prashar, J. Organomet. Chem., 437 (1992) 177.
8 P. Jutzi, J. Dahlhus and M.O. Kirsten, J. Organomet. Chem., 450 (1993) C1.

9 D. Deng, C. Qian, F. Song, Z. Wang, G. Wu and P. Zheng, J. Organomet. Chem., 443 (1993) 79.
10 R. Anwander, W.A. Herrmann, W. Scherer and F.C. Munk, J. Organomet. Chern., 462 (1993) 163.
11 T.J. Clark, T.A. Nile, D. McPhail and A.T. McPhail, Polyhedron, 8 (1989) 1804.
12 T.D. Tilley, J.M. Boncella, D.J. Berg, C.J. Burns and R.A. Andersen, Inorg. Synth., 27 (1990) 146.
13 T.A. Nile, unpublished work.
14 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.

15 G.M. Sheldrick, in G.M. Sheldrick, C. Krüger and R. Goddard (eds.), Crystallographic Computing 3, Oxford University Press, 1985, pp. 175-189.
16 A.G. Avent, M.A. Edelman, M.F. Lappert and G.A. Lawless, J. Am. Chem. Soc., 111 (1989) 3423.
17 T.D. Tilley, R.A. Andersen, B. Spencer and A. Zalkin, Inorg. Chem., 21 (1982) 2647.
18 A.L. Wayda, J.L. Dye and R.D. Rogers, Organometalics, 3 (1984) 1605.

[^0]: Correspondence to: Professor M.F. Lappert.

 * Dedicated to Professor H. Werner, as a mark of esteem and friendship on the occasion of his 60th birthday.

[^1]: ${ }^{\text {a }} U_{\mathrm{eq}}$ is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.

[^2]: ${ }^{a} \mathrm{~N}-\mathrm{Yb}-\mathrm{O}$.

